## Elektrotechnische Grundlagen

- Vielfaches / Teile
- SI-Basiseinheiten
- Elektrischer Strom I in Ampere
- Elektrische Spannung U in Volt
- $^{ullet}$  Elektrischer Widerstand R in  $\Omega$
- \* Kirchhoff'sche Regeln
- Spezifischer Widerstand und Leitfähigkeit
- Elektrische Leistung & Elektrische Arbeit
- Kabel & Stromleiter
- \* Wechselgrößen und Pulsgrößen
- Scheinleistung
- Wirkungsgrad
- Schutzklassen
- FI-Schutzschalter
- Gefahren des elektrischen Stroms
- Formelsammlung

### Vielfaches / Teile

| Vielfaches       | Bezeichnung | Teile             | Bezeichnung |
|------------------|-------------|-------------------|-------------|
| 10 <sup>1</sup>  | da          | 10-1              | d           |
| 102              | ha          | 10-2              | С           |
| 10 <sup>3</sup>  | k           | 10-3              | m           |
| 10 <sup>6</sup>  | М           | 10 <sup>-6</sup>  | μ           |
| 10 <sup>9</sup>  | G           | 10 <sup>-9</sup>  | n           |
| 10 <sup>12</sup> | Т           | 10 <sup>-12</sup> | р           |
| 10 <sup>15</sup> | Р           | 10 <sup>-15</sup> | f           |

### SI-Basiseinheiten

| Meter     | m  | I |
|-----------|----|---|
| Kilogramm | kg | m |
| Sekunde   | S  | t |
| Ampere    | A  | I |
| Kelvin    | K  |   |

## Elektrischer Strom I in Ampere

→ Je mehr Elektronen fließen, desto größer ist die Stromstärke

**Technischer Stromrichtung:** + → -

Physikalische Stromrichtung: - → +

## Elektrische Spannung U in Volt

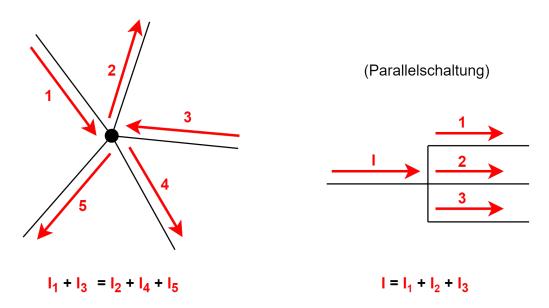
→ Spannungsquelle besitzt zwei Pole mit unterschiedlichen Ladungen.

#### Minus & Plus

Die Spannung U gibt an, wie viel Energie notwendig ist, um den Elektronenunterschied auszugleichen.

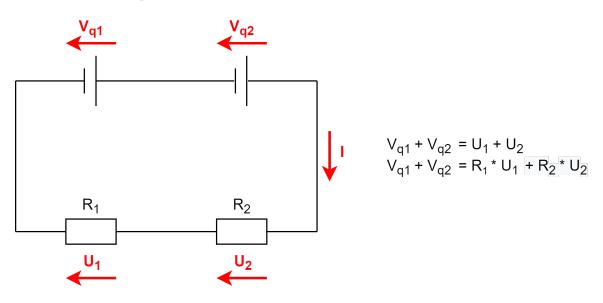
→ **Ursache** es elektrischen Stroms.

## Elektrischer Widerstand R in $\Omega$


→ Freie Ladungsträger stoßen gegen Atome und werden im Fluss gestört.

Ohm'sches Gesetz: U = R \* I

### Kirchhoff'sche Regeln


→ Beschreibung der Abhängigkeit von **U**, **I** und **R**.

#### **Knotenregel**



Ströme teilen sich auf, Spannung bleibt gleich.

### **Maschenregel**



In der Reihenschaltung ist I gleich groß.

### Reihenschaltung

• I ist für alle Verbraucher gleich.

$$R_{ges} = R_1 + R_2 + \cdots + R_n$$

### **Parallelschaltung**

• I teilt sich auf. Je größer R desto kleiner I.

$$G=\frac{1}{R}$$

$$\frac{1}{R_{ges}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n}$$

### Spezifischer Widerstand und Leitfähigkeit

Länge I

Querschnitt A  $r^2 \cdot \pi$ 

Spezifischer elektrischer Widerstand/Leitfähigkeit

 $p \qquad k$ 

$$\Rightarrow R = \frac{p \cdot l}{A} \quad oder \quad R = \frac{\frac{1}{k} \cdot l}{A}$$

|        | р       | k    |
|--------|---------|------|
| Silber | 0,016   | 62,5 |
| Kupfer | 0,01786 | 56,2 |
| Gold   | 0,023   | 43,5 |
| Eisen  | 0,25    | 10   |

## Elektrische Leistung & Elektrische Arbeit

#### **Elektrische Leistung**

→ pro Zeiteinheit verrichtete Arbeit

$$P = U \cdot I$$
 $P = R \cdot I^2$ 
 $P = U^2 / R$ 
 $P = W / t$ 

#### **Elektrische Arbeit**

→ U bewegt Ladung Q: Es entsteht W

$$W = P \cdot t$$

$$W = I^{2} \cdot P \cdot t$$

$$W = (U^{2} \cdot t) / R$$

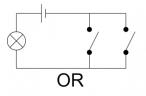
$$W = U \cdot I \cdot t$$

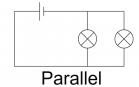
### Kabel & Stromleiter

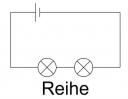


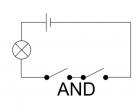
Erde

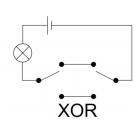



Schutzleiter

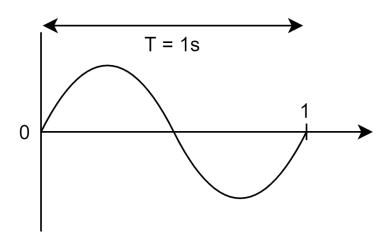




Schutzleiter


\_\_\_


Außenleiter (L<sub>1</sub>, L<sub>2</sub>, L<sub>3</sub>)



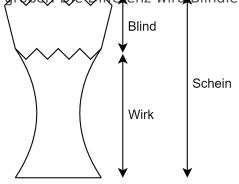








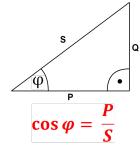

### Wechselgrößen und Pulsgrößen




$$U_{eff} = \frac{1}{\sqrt{2}} \cdot \widehat{U} \qquad f = \frac{1}{T}$$

 $\widehat{m{\textit{U}}}$  entspricht dem Spitzenwert im Maximum. U $_{
m eff}$  liegt darunter, i.d.R. 230V.

### Scheinleistung


Bei Gleichspannung ist die Scheinleistung gleich der Wirkleistung. Bei Wechselspannung ist sie größer Die Differenz wird Blindleistung genannt.



$$S = U \cdot I$$

$$P = U \cdot I \cdot \cos \varphi = S \cdot \cos \varphi$$

$$Q = U \cdot I \cdot \sin \varphi = S \cdot \sin \varphi$$



# Wirkungsgrad $n = \frac{P_{ab}}{P_{zu}}$

$$n = \frac{P_{ab}}{P_{zu}}$$

$$P_v = P_{zu} - P_{ab}$$

Der Quotient aus abgeführter und zugeführter Leistung bestimmt den Wirkungsgrad n. Er ist in der Regel kleiner als 1.

### Schutzklassen

I Erdung



II Isolierung



III Kleinspannung < 50V



### Sicherheitsregeln

- 1. Freischalten
- 2. Gegen Wiedereinschalten sichern
- 3. Spannungsfreiheit feststellen
- 4. Erden und Kurschließen
- 5. Benachbarte, unter Spannung stehende Teile abdecken oder abschranken

### FI-Schutzschalter

Der FI-Schutzschalter schützt den Menschen. Die Sicherung schützt die Leitung.

- Verhindern, dass ein Fehlerstrom durch den Körper einer Person fließt.
- Begrenzen auf ungefährlichen Wert.
- Begrenzen auf ungefährliche Dauer.

### Gefahren des elektrischen Stroms

#### **Physiologisch:**

- 0,5 mA → Keine Empfindung
- 1 mA → Muskelverkrampfung
- 50 mA → Herzkammerflimmern
- → Herzstillstand

#### Wärme:

- Verbrennungsmarken
- Gerinnung Bluteiweiß
- Platzen roter Blutkörperchen

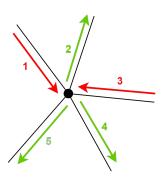
#### **Chemisch:**

Zersetzung Zellflüssigkeit → Vergiftung

#### Die 5 Sicherheitsregeln

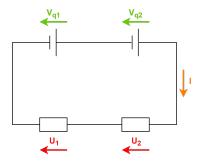
- 1. Spannung abschalten
- 2. Aus Gefahrenbereich bringen
- 3. Arzt/Rettungsdienst
- 4. Verletzungen?
- 5. Stabile Seitenlage, Schocklage oder Herzmassage

### Formelsammlung


#### Vielfaches / Teile

| Vielfaches       | Bezeichnung | Teile             | Bezeichnung |
|------------------|-------------|-------------------|-------------|
| 101              | da          | 10-1              | d           |
| 10 <sup>2</sup>  | ha          | 10-2              | С           |
| 10 <sup>3</sup>  | k           | 10 <sup>-3</sup>  | m           |
| 10 <sup>6</sup>  | М           | 10 <sup>-6</sup>  | μ           |
| 10 <sup>9</sup>  | G           | 10 <sup>-9</sup>  | n           |
| 10 <sup>12</sup> | Т           | 10 <sup>-12</sup> | р           |
| 10 <sup>15</sup> | Р           | 10 <sup>-15</sup> | f           |

#### Ohm'sches Gesetz


$$U = R * I$$
  $I = U / R$   $R = U / I$ 

### Kirchhoff



$$I_1 + I_3 = I_2 + I_4 + I_5$$

I teilt sich auf, U bleibt gleich



I gleich groß

### Reihenschaltung

$$R_{ges} = R_1 + R_2 + \cdots + R_n$$

Parallelschaltung

$$\frac{1}{R_{ges}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n}$$

Spezifischer Widerstand und Leitfähigkeit

$$R = \frac{p \cdot l}{A}$$
  $A = r^2 \cdot \pi$   $p = \frac{1}{K}$ 

Elektrische Leistung

$$P = U \cdot I$$

$$P = R \cdot I^2$$

$$P = U^2/R$$

$$P = W/t$$

Elektrische Arbeit

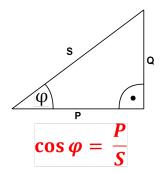
$$W = P \cdot t$$

$$W = I^{2} \cdot P \cdot t$$

$$W = (U^{2} \cdot t) / R$$

$$W = U \cdot I \cdot t$$

Effektivwert


$$U_{eff} = \frac{1}{\sqrt{2}} \cdot \widehat{U}$$
  $f = \frac{1}{T}$ 

Scheinleistung

$$S = U \cdot I$$

$$P = U \cdot I \cdot \cos \varphi = S \cdot \cos \varphi$$

$$Q = U \cdot I \cdot \sin \varphi = S \cdot \sin \varphi$$



Wirkungsgrad

$$n = \frac{P_{ab}}{P_{zu}}$$

$$P_v = P_{zu} - P_{ab}$$